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Essence of life

* All organisms, from cells to giant sequoias, comprise a set of
moveable parts which they have to coordinate to couple with other
organisms and with the inanimate environment.



Biological Information

* In order to coordinate movements, organisms must include an
organized system of flow of biological information.

* Biological information is a temporal pattern of physical power, mainly
electro-chemical power flowing in the nervous system, or equivalent
system in cells.

* Biological information is a physical analogue gquantity that does
something directly, not via an arbitrary digital code.




Use of biological information

To control purposeful actions, by
* Prescribing actions
* Perceptually monitoring actions
* Performing actions



Nature of biological information

* Must be prospective
* Must be independent of the level of physical power

* Must be specific to its source
* Must fit with physical laws -
notably the Inverse Square Law



Rho/Tau
Body-environment perceptual information

* Intensity of stimulation at a receptor is proportional to
(intensity of source)/(square of distance away).
* Means that distance away is not specified.

* Thus, there is no direct information about distance, velocity, acceleration,
or jerk of the gap between source and receptor.

* The only information that is directly available is Rho,
the relative-rate-of-change (dX /dt)/ X of the gap, X, to the receptor
(or Tau, the inverse of Rho).

* Rho of intensity at receptor = -2 x rho of distance away (from the Inverse
Square Law).




Stimulus Rho => Perceptual Neural Rho

no (optical power) => Rho (neural power)
no (acoustic power) => Rho (neural power)
no (chemical power) => Rho (neural power)
no (mech. power) => Rho (neural power)
no (thermal power) => Rho (neural power)

no (electric power) => Rho (neural power)



Rho/Tau
The currency of biological information

Biological information must be in the same currency, of the same form,
both within and across organisms, to make coupling of movements
efficient. Since, as shown, rho/tau is the perceptual information
currency, this must be the general biological information currency.



Controlling movement requires three
functional Rhos

*Prescriptive
*Perceptual
*Performatory



Prescriptive Rhos

A hypothesised prescriptive rho is founded on the ecological invariant
gravity. It is ),p ,which equals the rho of the gap between an object
fallmg from rest to the ground, multiplied by an ‘oomph’ factor, A .

p(X)=Ap, =2At /(£ ~T?)

where T is the total movement duration and timet=0to T.



Effect of the oomph factor k (=1/A) on
the velocity of closure of a gap X
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Activities found to use
RhoG/TauG-coupling

* Flying (bats, birds, humans) * Reaching

* Gesturing (babies) * Running

* Hitting (golf) * Singing

* Intercepting and catching * Suckling (babies)

* Playing musical instrument * Swimming (cells)



Function of Basal Ganglia in Controlling Action

, _ Regions recorded:
* Single unit and movement

recording from rhesus monkeys ° Gpe: globus palidus ext.
reaching to targets. * Gpi: globus palidus int

e STN: sub-thalamic nucleus
e /l: zona inserta



neural power in cortical cells (spikes mtu)
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Conclusions: Functions of Basal Ganglia

* GP involved in creating the prescriptive neural power
for rhoG.

* STN involved in monitoring the perceptual neural power
about the action.

e Zl involved in combining the prescriptive and perceptual
neural powers to create a performative neural power to
the muscles.




Summary 1
Body-environment-coupling law

p(NP)=Ap(EP)

NP = power flowing in neurons
EP = power flowing from environment to body



Summary 2
Neural Information for Creating Actions

p(NP,
p(NP

prescriptive) — p G

p(NP,

erceptual )

erformatory )

Note: All are vectors




RhoG/TauG-coupling
makes possible
coordination and coupling of
movements

Some examples follow



Ella Fitzgerald and one-day-old baby
in duet

Ella baby




Acoustic motion wavelets

Ella Fitzgerald's riff from "Too close for comfort"
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Acoustic motion parameter profiles
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Measures on acoustic motion wavelets &

profiles

Ella audio profiles Props Ella audio profiles Ts Ella audio profiles As Ella audio profiles Ks
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2 pianists playing same piece, different expression

60s clip from

Uchida MozartPS audio profiles Props

Uchida MozartPS audio profiles Ts

Uchida MozartPS audio profiles As

Uchida MozartPS audio profiles Ks

3.5 T T 35F T 5 T o
. ——upT MN —a—upA MN ——upK MN
Mozart piano o | et af BN » D -
_8 . — LT CV upA CV —— UpK CV
sonata K545 | e o B - B :
g 0.6 - — dnProp MN 5 of ] ]
andante : DI = ‘
= P
o -8 — dnProp CV - I ] F ;
S 04 1 = E —
g = / /
o e — ¢ — — 7, & E
s 1 1 — Z
0.2
05 05| - - NS
——— = - P — e —F——
wav upT dnT upA dnA upK dnK wav upT dnT upA dnA upK dnK wav upT dnT upA dnA upK dnK wav upT dnT upA dnA upK dnK
: nrnfh Lrafile nrofile Lrafile
Resu It' the Barenboim MozartPS audio profiles Props Barenboim MozartPS audio profiles Barenboim MozartPS audio profiles Barenboim MozartPS audio profiles Ks
. - 3.5 T T 35F T T 3.5F i 5
_... e ——upT MN —— UpA MN UpK MN
flexibility (cv) . - | D af P -
< r ——upT CV ——UpA CV ——LpK CV
- f K I =2 —e—upProp MN 2.5 —. = dnT CV 25+ .= dnA CV 25¢ —. = dnK CV 7
= v
IN uSe O IS 2 o6l DI F !
S 2 . 2 ¥ 2t -
. = —e—upProp CV ; 3
= 3
higher for E D I ,
‘é [ < :
S 1 LN ks ks St 3 1} y .
e upper : < <
L ——-. - I~ -
0.5 I 0.5 0s5f
 ————— — — =
more 58 ]
. T T 0 [0} 0
wav upT dnT upA dnA upK dnK wav upT dnT upA dnA wav upT dnT upA dnA upK dnK wav upT dnT upA dnA upK dnK

expressive
pianist

profile

profile

profile

profile




proportion taua-guiaed

PIUPUI uvii tauu‘gulucu

Recitation vs regular s

Burton audio profiles Props

1 B S —
q
os|
B e UpProp MN
0.6 -_ =@ == dnProp MN
i =@ UpProp CV L
i —
r =@ == dnProp CV
0.4
0.2 L
S
0 Lo el el Jrafiars -
wav upT dnT upA dnA upK dnK
profile
S2 audio profiles Props
1 — —
—————— — = —"¢ -
\ - >
o8l ]
@ LpProp MN T
0.6 -— =@ == dnProp MN _-
I —@=— UpProp CV : )
r =@ == dnProp CV 1+
0.4 - .
0.2 - 4
L }i\ R
4 N~ 7
ol= pm—d e 3’ 1

wav upT dnT upA dnA upK dnK

profile

Burton audio profiles Ts

[ m—— UDT MN ]
1.4 == dnT MN -
[ — e UpPT CV i
1.2 F ]
r =8 = dnT CV ]
1L ]

= __i

A (arb dims)

wav upT dnT upA dnA upK dnK

profile

S2 audio profiles Ts

1.6 pr—r~ MR IR R B
[ —— U T MN ]
1.4 | ]
[ == dnT MN E
1.2 L —@— upT CV a
[ —e = dnT CV ]
1r ]
o8} ]
0.6} :
p ]
0.4 —\\/\ ,dr——dl—_q'.
L ‘——_i,_— —
0.2 ]
e inininin ===

wav upT dnT upA dnA upK dnK
profile

A (arb dims)

Burton audio profiles As

1.6 p~—— S I I
& —u— UDA MN
1'41) -8 — dnA MN
1.2 I —— UpA CV
L =@ == dnA CV
1L
0.8 —
0.6 -
0.4 [
0.2 &
ol
wav upT dnT upA dnA upK dn
profile
S2 audio profiles As
1.6 T T T
—— UDA MN ]
1.4 == dnA MN y
1.2 m—g=—= UpA CV ]
=@ == dnA CV ]
1
N T
Y- J
0.6
0.4
0.2
(0]

K (nondim.)

K

K (nondim.)

wav upT dnT upA dnA upK dnK

profile

neech

1.6
1.4

1.2

0.2

1.6

1.4

1.2

0.8

0.6

0.2

Burton audio profiles Ks

'y
L=

—u— DK MN

wav upT dnT upA dnA upK dnK

profile

S2 audio profiles Ks

/

—e— U DK MN
=g == dnK MN
=@ UpK CV

=9 == dnK CV

——

wav upT dnT upA dnA upK dnK

profile



proportion tauG-guided

0.8

0.4

Propourtion taua-yuiucedu

0.2

Joyful vs Sad Handel's Messiah
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Sprinting
(red lines - tauG-coupled movements)
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Pergolesi: Vanne, Vale, Dico Addio




a Fitzgerald
issando




Rhapsody 1n Blue opening glissando




Humpback whale sounds




Amjad Ali Khan: Sarod
Pitch-glides




TauG-coupling of lip movements playing note on
trombone (slowed down 40 times)

High speed footage of real brass
players lips: Click image to



Analysis of lip movements

closing opening
mn (sd) duration (ms) 8 (1) 22 (15)
mn (sd) % tauG coupling 100 (O0) 74 (29)

mn (sd) r~

0. 999 (0.001)

0.981 (0.014)

mn (sd) k

0.781 (0.136)

1.115 (0.638)




Parkinson’s disease

Paradoxical movement:
* Tau-coupled movements guided from without can be normal.

* TauG-coupled movements guided from within are less skillful.

Question:
Might coupling movement to tauG-coupled sound help?



Upward ‘Whoop’




The shapes of tauG-coupled upward ‘Whoops’
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Up and down pitch(f,) ‘Whoop’




“Whoops’ helped tauG-coupled sway
in Parkinson’s

a -Task 1: . Diirection of sway
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